
Vol. 32, No. 1 · FEBRUARY 2018

Oracle Licensing in
the Cloud—Part IV
Comply or else.
See page 16.

12 Things to Love
about 12cR2
The SQL advocate advocates.
See page 20.

Hard Words
Mogens Norgaard brings the
past for judgment into the
thousand-eyed present.
See page 4.

Much more inside . . .

http://www.nocoug.org

The New Phoenix by Axxana
For Oracle Databases and Applications

• Low Cost Replication Lines
• Shortest Recovery Time
• Full Consistency Across Multiple Databases

www.axxana.com

Zero Data Loss
at Unlimited Distances

Synchronous Protection
at Maximum Performance

http://www.axxana.com

3
The NoCOUG Journal

2018 NoCOUG Board
Dan Grant

Exhibitor Coordinator

Eric Hutchinson
Webmaster

Iggy Fernandez
President, Journal Editor

Jeff Mahe
Vice President

Kamran Rassouli
Social Director

Larry Stimely
Member at Large

Liqun Sun
Brand Ambassador

Michael Cunningham
Director of Special Events

Naren Nagtode
Secretary, Treasurer, President Emeritus

Noelle Stimely
Membership Director

Roy Prowell
Director of Publicity and Marketing

Saibabu Devabhaktuni
Conference Chair

Tu Le
Speaker Coordinator

Volunteers

Tim Gorman
Board Advisor

Brian Hitchcock
Book Reviewer

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern California
Oracle Users Group (NoCOUG) approximately two weeks prior to the quarterly
educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG Journal
editor at journal@nocoug.org.

The submission deadline for each issue is eight weeks prior to the quarterly confer­
ence. Article submissions should be made in Microsoft Word format via email.

Copyright © by the Northern California Oracle Users Group except where other­
wise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

Interview.. 4

Brian’s Notes... 11

Special Feature.. 15

Special Feature.. 18

ADVERTISERS

Axxana.. 2

Quest...13

OraPub... 28

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

	 Size	 Per Issue	 Per Year

	 Quarter Page	 $125	 $400

	 Half Page	 $250	 $800

	 Full Page	 $500	 $1,600

	 Inside Cover	 $750	 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Professionals at Work

First there are the IT professionals who write for the Journal. A very

special mention goes to Brian Hitchcock, who has written dozens of

book reviews over a 12-year period. The professional pictures on

the front cover are supplied by Photos.com.

Next, the Journal is professionally copyedited and proofread by veteran copy­

editor Karen Mead of Creative Solutions. Karen polishes phrasing and calls out

misused words (such as “reminiscences” instead of “reminisces”). She dots every

i, crosses every t, checks every quote, and verifies every URL.

Then, the Journal is expertly designed by graphics duo Kenneth Lockerbie

and Richard Repas of San Francisco-based Giraffex.

And, finally, David Gonzalez at Layton Printing Services deftly brings the

Journal to life on an offset printer.

This is the 125th issue of the NoCOUG Journal. Enjoy! s

—NoCOUG Journal Editor

http://nocoug.org
http://nocoug.org
mailto:journal@nocoug.org
mailto:journal@nocoug.org
http://www.photos.com
http://www.giraffex.com
http://www.giraffex.com
http://www.giraffex.com

4
February 2018

I N T E R V I E W

Hard Words
by Mogens Norgaard

Mogens Norgaard

“To blindly believe anything that Mogens says here would not win you
any points with him—or with Emerson. As always, the challenge

is to make an informed decision tailored to your unique circumstances
while considering the alternatives. Do that and you will win his

respect in spades. Even more if you prove him wrong.”

Editor’s note: In the early days of Oracle RAC, the “enfant terrible”
of the Oracle community, Mogens Norgaard, wrote a provocative
paper titled “You Probably Don’t Need RAC.” The technology has
matured and improved since the date of the paper and, therefore,
a number of the technical details in the paper are no longer valid.
However, the underlying message of the paper is that you need to
make an informed decision, justify the increased complexity and
cost, and consider the alternatives. In the August 2011 issue, we
asked Mogens whether we “probably needed” such things as RAC,
Exadata, Oracle 12c, MySQL, certifications, ITIL, NoCOUG, the
NoCOUG Journal, and printed books. In this issue, we ask wheth-
er we probably need “data protection regulation” (the European
Union’s latest push for consumer privacy), the cloud, cryptocurren-
cies, the internet of things, and NoSQL. We also offered Mogens the
opportunity to revise his previous opinions because, as so elo-
quently said by the American prophet of self-confidence and non-
conformity Ralph Waldo Emerson, “The other terror that scares us
from self-trust is our consistency; a reverence for our past act or
word, because the eyes of others have no other data for computing
our orbit than our past acts, and we are loath to disappoint them.
. . . Why drag about this corpse of your memory, lest you contradict

somewhat you have stated in this or that public place? Suppose you
should contradict yourself; what then? It seems to be a rule of wis-
dom never to rely on your memory alone, scarcely even in acts of
pure memory, but to bring the past for judgment into the thousand-
eyed present, and live ever in a new day. . . .A foolish consistency
is the hobgoblin of little minds, adored by little statesmen and
philosophers and divines. With consistency a great soul has simply
nothing to do. He may as well concern himself with his shadow on
the wall. Speak what you think now in hard words, and to-
morrow speak what to-morrow thinks in hard words again,
though it contradict every thing you said to-day.—‘Ah, so you
shall be sure to be misunderstood.’—Is it so bad, then, to be misun-
derstood? Pythagoras was misunderstood, and Socrates, and Jesus,
and Luther, and Copernicus, and Galileo, and Newton, and every
pure and wise spirit that ever took flesh. To be great is to be mis
understood.”

To blindly believe anything that Mogens says here would not
win you any points with him—or with Emerson. As always, the
challenge is to make an informed decision tailored to your unique
circumstances while considering the alternatives. Do that and you
will win his respect in spades. Even more if you prove him wrong.

“I read the other day some verses written by an eminent painter which were original and not conventional.
The soul always hears an admonition in such lines, let the subject be what it may. The sentiment they instill
is of more value than any thought they may contain. To believe our own thought, to believe that what is true
for you in your private heart is true for all men,—that is genius. . . . the highest merit we ascribe to Moses,
Plato, and Milton is, that they set at naught books and traditions, and spoke not what men but what they
thought. A man should learn to detect and watch that gleam of light which flashes across his mind from
within, more than the lustre of the firmament of bards and sages. Yet he dismisses without notice his thought,
because it is his. . . . to-morrow a stranger will say with masterly good sense precisely what we have thought
and felt all the time, and we shall be forced to take with shame our own opinion from another.”

—Ralph Waldo Emerson, mid-19th century American philosopher and poet.

5
The NoCOUG Journal

Do we probably need a General Data Protection Regulation
(GDPR)? What are Europeans trying to hide anyway?

GDPR is awesome. Law firms are hiring like crazy all over
Europe because there will be so many lawsuits after May 25.
Class-action stuff will be allowed, which is new. Yeehaw.

GDPR is cool because the citizens of the EU area become the
owners of their own data on May 25, not Walmart or your doctor
or Facebook. You can make deals with them, you might be able
to sell your data to others, you get The Right To Be Forgotten,
and so on. Although it’s my understanding that a request from
you to your tax authorities about being forgotten probably will
not go through.

GDPR is wonderful because it creates a new market, includ­
ing the initial Fear, Uncertainty, and Doubt, thus making every­
one richer,

GDPR is incredible, because I have been on national televi­
sion twice (at length), national radio four times (at length), and
in most newspapers and hipster magazines in Denmark, just be­
cause I sent out a press release stating, “I want to buy your per­
sonal data.” Also, some of my guys are currently busy creating a
platform that allows citizens and companies to handle all sorts of
stuff regarding this. We call it Datatrade.dk.

In my Datatrade.dk project, we see three groups of interested
citizens: the ones that are flat out curious about what sort of data
the companies have on them, the ones that just want to be forgot­
ten (aka off-grid), and the ones that might be tempted to trade
their personal data on the platform. Other needs will be met by
the platform when it comes to companies: storing up-to-date
information for them instead of them doing it, and an automatic
pipeline to the law firms when a request is not met on schedule,
etc.

Fun fact: Everything on paper should also be GDPR-
compliant. So all those old CVs and papers and binders in your
offices should be GDPR’ed before May 25. The general consensus
among my friends is to throw most of it out (about time, as they
say), but imagine public bureaucracies and their less-than-digital
tendency to keep records of everything :-).

GDPR will be yuuuuge. It will require many “stable geniuses”
in the coming years.

Embrace, embrace, embrace!

Do we probably need to move our databases to the cloud this
week, this month, or this year?

Yes. This week might be too late. Better do it tonight while hav­
ing a good beer or 12. Until some months ago I used to say that
the business case for having your own server room is stone dead.

But as some Danish philosopher wisely said many years ago:
“You’re always wrong.”

Turns out, just as the cloud is looking set to really, truly
dominate our current planet, something else pops up, which will
be so much bigger and more complex than the cloud: the fog, aka
edge computing.

All those IoT and IIoT (yes, we tend to add an extra I every
two months or so) thingies create so much data that we can’t even
begin to imagine it. That data needs storage and computing to
happen on it, and it needs it fast. That won’t happen using the
cloud. The LATEncy will kill it. So we need local compute and
storage for this. Say hello to the periphery, the edge, or whatever.

Listen to what The Economist wrote this week (January 19,
2018):

About Vapor IO, Nokia, and Whole Foods: “But smaller and
more local data centres are springing up everywhere. Firms such as
EdgeConneX and vXchnge have built networks of urban data cen-
tres. Vapor IO, a startup, has developed a data centre in a box that
looks like a round fridge and can be quickly put in any basement.
Makers of telecoms equipment, including Ericsson and Nokia, as
well as network operators, talk a lot about ‘mobile edge comput-
ing’, which amounts to putting computers next to wireless base
stations or in central switching offices. Some also speculate that
one reason why Amazon last year bought Whole Foods, a chain of
grocery shops, for nearly $14bn, was to accumulate property for
local data centres.”

About Microsoft and the Weather Company: “Big cloud-
computing providers are also trying to colonise the periphery. In
May Microsoft changed its slogan from ‘mobile first, cloud first’ to
‘intelligent cloud and intelligent edge’. It sells services that dispatch
software containers with AI algorithms to any device. AWS’s port-
folio now includes a service called Greengrass, which turns clusters
of IoT devices into mini-clouds. In buying the Weather Company

“All those IoT and IIoT thingies create so much data that we can’t even
begin to imagine it. That data needs storage and computing to happen on it,

and it needs it fast. That won’t happen using the cloud. The LATEncy
will kill it. So we need local compute and storage for this. Say hello to

the periphery, the edge, or whatever.”

“General Data Protection
Regulation (GDPR) is cool because
the citizens of the EU area become

the owners of their own data on
May 25, not Walmart or your doctor

or Facebook. You can make deals
with them, you might be able to sell

your data to others, you get The
Right To Be Forgotten, and so on.”

https://nam01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fdatatrade.dk&data=02%7C01%7C%7C36dc459fbb6248be980508d561ae6739%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C636522324032801528&sdata=S1fnHwXINgOW%2Bhz5QblfSYqwKYbbL5eKwjxX85Kh2Lg%3D&reserved=0

6
February 2018

6

for $2bn in 2015, IBM wanted weather data, but also thousands of
‘points of presence’ for edge computing.”

About Air Computing: “Whoever prevails, computing will
become an increasingly movable feast, bits of which can be found
in even the smallest devices. Processing will occur wherever it is
best placed for any given application. Data experts have already
started using another term: ‘fog computing’. But the metaphor is a
bit, well, foggy. Better, and more poetic, would be ‘air computing’:
it is everywhere and gives things life.”

So I think we’ll see a lot of NDCs (Nano Data Centers) spring
up everywhere, and we’ll have so much more complexity, which
is fantastic. Problems drive our incredibly luxurious lives, and
hence increased complexity is very welcome.

As for databases as you and I have known them, just get them
out of there and into the cloud unless you have some weird re­
quirements. Or get rid of them altogether. We Do Not Use Data­
bases.

Do we probably need bitcoin? Alt-coins?

Cryptos are so cool. They make all sorts of freedoms possible,
which is why the horror regimes are the first to outlaw them. As
if that can stop it. We have a saying in Danish, “The cat is out of
the sack,” meaning there’s no stopping it, now that people have
seen it work. It’s like outlawing ride sharing from Uber: alterna­
tives spring up really fast. Cryptos are, just like any other cur­
rency, based on trust. That’s all.

But what I really, really, really love is the blockchain. It repre­
sents the first time mankind has a tool that allows two strangers
to completely trust each other. It will change more in our lives
than the internet, and it will make things so much more efficient
and cheap. For instance, a group of Wall Street banks estimate
that it will give them $21 billion in pure cost savings. The block­
chain attacks the center, not the periphery, so Uber, Airbnb, and
all those other disrupters can and will be disrupted by this tech­
nology, but the drivers, the renters, and all the other citizens of
our current planet will benefit immensely.

There will be many variations of the blockchain, some relying
on smarter and faster algorithms or ideas, some giving us a little
less trust in order to provide much greater speed, and so on. But
again: The cat is out of the sack. We have now seen that it’s pos­
sible to do the impossible. The generals’ dilemma has been
solved.

I’ve personally made a small fortune on BTC, by the way . . .
and I’m about to launch a really cool service that will make me a
bank director, which I always wanted to be.

My dad would be proud of me. He was in a small Danish bank
in his youth before he joined the Danish Army. He’ll be sitting in
the cloud watching his weird, left-leaning son become a bank
director!

Do we probably need the internet of things? Will Alexa rule
them all?

As stated in the first question, I really appreciate stuff that
complicates everything. It makes all of us so much richer.

I’m also launching a separate company that will address both
Industrial IoT (IIoT) customers and ordinary citizens that just
want their laptop backed up, their Wi-Fi to work in the base­
ment, and hopefully also Hue lightbulbs, Alexa, smartwatches,
Eve room monitors, the Nokia scale, and so much more.

I’ll let bright, young, beautiful, and cheap people run around
and set up, fix, and adjust all this in private homes and small
businesses. I shall conquer the IoT home front!

Alexa might dominate, since Amazon consistently does all the
right things. They’ve even made it easy to return stuff you bought
now. A company like that will succeed.

But it will probably grow too big and will be forced to break
up just like Standard Oil and AT&T. But I’m always wrong.

 Do we probably need NoSQL? Please say no.

Yes. Ha!

It was probably a bad idea to put the word “No” in the name,
just as Oracle really hated the “Not” in my RAC paper. But it’s too
late to change it to YeSQL.

Some of my guys are old, bitter, twisted idiots like you and me
(old idiots are afraid of anything new and anything foreign, as
you know), and yet they find interesting things to use NoSQL
databases for.

Although all the redundancy drives them mad for reasons of
principle.

And the young people use it, so that’s the future by definition.

And it creates a bit more chaos and complexity because they
are so different.

“AWS’s portfolio now includes a
service called Greengrass, which
turns clusters of IoT devices into

mini-clouds. . . . Some also
speculate that one reason why

Amazon last year bought Whole
Foods, a chain of grocery shops, for

nearly $14bn, was to accumulate
property for local data centres.”

“We have now seen that it’s possible to do the impossible. . . . The blockchain
represents the first time mankind has a tool that allows two strangers to

completely trust each other. It will change more in our lives than the internet.”

7
The NoCOUG Journal

There you have it. We need it. We Do Not Use Relational, un­
less forced.

[August 2011] Years ago you said that we probably don’t need
RAC. Have you recanted yet? Do we probably need RAC?

I still think very, very few shops actually need RAC. Fantastic
technology—just like, say, head-up display (HUD) for cars—but
few really need it. RAC still has all the hallmarks of something
people will want to buy: It increases complexity immensely, it’s
expensive, it requires specialists that are increasingly hard to
find, there are always excellent alternatives—and it’s pretty much
perpetually unstable. For all those good reasons, more and more
customers are using it. Either because manly types like to in­
crease chaos, or because I’ve been telling people not to use it
since around the year 2000. Whenever I recommend or don’t
recommend something, most customers go out and do exactly
the opposite, so in that sense I have a great deal of influence in
the market.

[February 2018 update] MTAF/YAAW: Man Tager Altid Fejl/You
Are Always Wrong.

Said by a Danish philosopher many moons ago. It’s a hard
truth. For instance, I recently learned, to my big surprise, that
Denmark had nukes (for use on Nike/Hawk and Honest John
missile systems, and on the F-104 Starfighters) during the Cold
War. My dad was an officer. I spent many years in the National
Guard as a sergeant. I never thought we were a nuclear nation,
because we always told everyone that we weren’t. But we were. I
also recently learned that Churchill was totally against the inva­
sion on D-day. So: you should expect to be proven wrong, to
learn new details, etc. And you should rejoice when that hap­
pens, even if you’ve told 42,000 friends what you used to be­
lieve.

With that in mind, I have been forced—brutally, but not vio­
lently—by the NoCOUG Journal to revisit stuff I claimed with
certainty seven years ago. Ouch.

I’m not even sure I have 20/20 hindsight. I don’t think many
have. But let’s go through it:

On RAC: I cannot imagine anyone running RAC today, but I
know they are. The Hadoop revolution took care of that. We now
have those sub-zero response times; infinite, galactic scaling; and
much better hair and personal lives, thanks to Mr. Cutting &
Friends. However, to make up for all those upsides, it’s also
pretty much free.

[August 2011] Do we probably need Exadata? Is Big Iron the
ultimate answer to the great question of life, the universe, and
everything?

In some ways, Exadata is the new RAC. It’s a lot about hard­
ware, uptime, performance, amazing technology—and price. It’s
also approaching the “Peak of Inflated Expectations” as seen in
Gartner’s hype cycle, and it will soon set its course downwards
toward the “Trough of Disillusionment.” Just like with RAC, I
simply love the technology—a lot of good guys that I like and
respect are on it, but few really need it. One of the things I love
about it is that there isn’t any SAN involved, since I believe SANs
are responsible for a lot of the instability we see in IT systems
today. I tend to think about Exadata as a big mainframe that
could potentially do away with hundreds of smaller servers and
disk systems, which appeals hugely to me. On the other hand, the
pricing and complexity makes it something akin to RAC—that’s
my current thinking.

[February 2018 update] On Exadata: See my update on RAC.

[August 2011] Do we probably need Oracle Database 12c (or
whatever the next version of Oracle Database will be named)?

Since Oracle 7.3, that fantastic database has had pretty much
everything normal customers need. It has become more and
more fantastic; it has amazing features that are light years ahead
of competitors—and fewer and fewer are using the database as it
should be used (they’re using it as a data dump, as Tom Kyte said
many years ago), so the irony is that as the database approaches
a state of nirvana (stability, scalability, predictability, diagnos­
ability, and so forth—fewer and fewer are using it as it should be
used (in my view), and more and more are just dumping data
into it and fetching it.

[February 2018 update] On Oracle 18 through Oracle 42: Free,
relational databases like MySQL and PostgreSQL, plus the whole
NoSQL revolution, means that new and fantastic Oracle features
will only be used by existing customers.

“Some of my guys are old, bitter, twisted idiots like you and me (old
idiots are afraid of anything new and anything foreign, as you know),

and yet they find interesting things to use NoSQL databases for. Although
all the redundancy drives them mad for reasons of principle. And the

young people use it, so that’s the future by definition.”

“Alexa might dominate [the
Internet of Things], since Amazon

consistently does all the right things.
They’ve even made it easy to return

stuff you bought now. A company
like that will succeed. But it will

probably grow too big and will be
forced to break up just like
Standard Oil and AT&T.”

8
February 2018

[August 2011] Do we probably need MySQL? Or do we get what
we pay for?

As customers (and especially new, freshly faced program­
mers) want to use new things instead of things that work and
perform, it becomes more and more logical to use MySQL or
other databases instead of the best one of them all: Oracle. Since
MySQL succeeded in becoming popular among students and
their professors, it is immensely popular among them when they
leave school (the professors stay, of course, since they don’t
know enough about databases to actually get a real job working
with them outside academia). So MySQL will be used a lot. And
it’s an OK database, especially if we’re talking the InnoDB en­
gine.

[February 2018 update] True story: When Ken Jacobs got a
call many years ago from a Finn who had written InnoDB who
said that he would sell it to MySQL unless Oracle was interested,
Ken called Larry and got the go-ahead in 20 minutes. Why do I
know that? Because Tuomas Pystynen and I were supposed to
have had dinner with the Finn in Helsinki that evening (includ­
ing one vodka at a time), but he cancelled. And then Ken wrote
to me, Bjoern Engsig, and one more asking us this simple ques­
tion: “We just bought MySQL—do you guys have any suggestions
as to what we can use it for?” And we didn’t. None of us. So for
that, I’m not impressed with myself.

[August 2011] Do we probably need certification? Or do we
learn best by making terrible mistakes on expensive production
systems?

I hate certifications. They prove nothing, and they become a
very bad replacement for real education, training, and knowl­
edge. Among Windows and Cisco folks, it’s immensely popular,
but you can now feed all the farm animals in Denmark (and
we’ve got quite a few, especially a lot of pigs) with certified
Microsoft and Cisco people. It’s taken by students (what?!? in­
stead of real education, they train them in something that con­

crete? I find it really stupid), among unemployed (we have a lot
of programs for those folks here), and what have you. They’re
worthless, and a lot of people think it will help them finding a
job, thereby providing false hopes and security.

YPDNC.

[February 2018 update] On certifications: I was wrong. They
serve a purpose. I should have seen it. I’m sorry. Fortunately,
everyone else saw their usefulness, so as usual my predictions did
absolutely no harm (or good).

[August 2011] Do we probably need ITIL? Should we resist those
who try to control and hinder us?

When you begin doing “best practices” stuff like ITIL, you’ve
lost. You’re pouring cement down the org chart in your shop, and
God bless you for that—it helps the rest of us compete. “Best
practices” means copying and imitating others that have shops
that are unlike yours. Standardizing and automating activity in
brain-based shops always seemed strange to me. The results—
surprise!—are totally predictable: jobs become immensely bor­
ing, response times become horrible, queues are everywhere, and
nothing new can happen unless a boss high up really demands it.
It’s Eastern Europe—now with computers. Oh, and it’s hype; it’s
modern right now but will be replaced by the next silly thing
(like LEAN—what a fantastically stupid idea, too). Maybe we’ll
have LEAN ITIL one day? Or Balanced Score Card–adjusted
ITIL? Or Total Quality Management of LEAN ITIL?

The funny thing is that Taylor’s ideas (called “scientific man­
agement”) were never proved, and he was actually fired from
Bethlehem Steel after his idiotic idea of having a Very Big
Hungarian lift 16 tons in one day (hence all the songs about 16
tons), because he cheated with the results and didn’t get anything
done that worked. Not one piece of his work has ever been
proved to actually work. His “opponent” was Mayo (around the
1920s), with his experiments into altering the work environment
(hence the constant org changes and office redos that everybody
thinks must be good for something)—and his work has never
been proved either. And he cheated too, by the way, which he
later had to admit. So all this management stuff is bollocks, and
ITIL is one of its latest fads. I say: Out with it. Let’s have our lives
and dignities back, please.

[February 2018 update] Well, I think I was also wrong here. The
world needed stability and quiet and so on. For that, ITIL served
a purpose (and several other similar systems). Then came
DevOps, Baby, and Lean Agile Scrum, and many other wonder­
ful and wild methods. So perhaps it’s safe to say: old, frozen
world: ITIL. For the rest of us: anything else, but probably
DevOps, Baby.

[August 2011] NoCOUG membership and attendance has been
declining for years. Do we probably need NoCOUG anymore?
We’ll celebrate our 25th anniversary in November. Should we

“Since Oracle 7.3, that fantastic
database has had pretty much

everything normal customers need.
It has become more and more

fantastic; it has amazing features
that are light years ahead of

competitors—and fewer and fewer
are using the database as it

should be used (they’re using it
as a data dump, as Tom Kyte

said many years ago).”

“Free, relational databases like MySQL and PostgreSQL, plus the whole
NoSQL revolution, means that new and fantastic Oracle features

will only be used by existing customers.”

9
The NoCOUG Journal

have a big party and close up the shop? Or should we keep
marching for another 25 years?

No. Oracle User Groups are dead as such. Just like user
groups for mainframe operators or typesetters. You can make
the downward sloping angle less steep by doing all sorts of
things, but it’s the same with all Oracle user groups around the
world. I think I have a “technical fix” or at least something crazy
and funny that can prolong NoCOUG’s life artificially: move
onto the Net aggressively and do it with video everywhere. Let it
be possible to leave video responses to technical questions (why
doesn’t Facebook have that?); let it be possible to upload video or
audio or text replies to debates and other things via a smart­
phone app. Let there be places where the members can drink
different beers at the same time and chat about it (and show the
beer on the screen), etc., etc. In other words: Abandon the real
world before all the other user groups do it—and perhaps that
way you can swallow the other user groups around you and
gradually have World Dominance.

[February 2018 update] [No update provided.]

[August 2011] It costs a fortune to produce and print the
NoCOUG Journal. Do we probably need the NoCOUG Journal
anymore?

I have subscribed to the world’s arguably best magazine, The
Economist, since 1983. Recently they came out with an app, and
now I don’t open the printed edition any more (I still receive it
for some reason). It’s so much cooler to have the magazine with
me everywhere I go, and I can sit in the bathroom and get half
of the articles in there read. It’s the way. Magazines should not be
available anymore in print. Nor should they (in my view) be
available on a silly website that people have to go to using a PC,
a browser, and all sorts of other old-days technology. The smart­
phone is the computer now. Move the magazine there aggres­
sively, and in the process, why not create a template that other
user groups could take advantage of? Or the Mother of All User­
group Apps (MOAUA) that will allow one user group after an­
other to plug in, so people can read all the good stuff all over the
world?

[February 2018 update] [No update provided.]

[August 2011] I’m writing a book on physical database design
techniques like indexing, clustering, partitioning, and material-
ization. Do we probably need YABB (Yet Another Big Book)?

No, certainly not. Drop the project immediately, unless you
can use it as an excuse to get away from the family now and then.
Or, if you must get all this knowledge you have out of your sys­
tem, make an app that people can have on their phone and actu­
ally USE in real-life situations. Abandon books immediately,
especially the physical ones.

[February 2018 update] [No update provided.] s

Mogens Nørgaard is a sought-after speaker for his different ap-
proach to, well, everything. Sparekassen SDS, 1987–1990: Data
base administrator, supporter, and trainer. Established a large
DW, managed hundreds of users, taught DW classes, and founded
the Danish Oracle User Group (OUG/DK). Oracle Denmark,
1990–2000: support analyst, support team lead; founded Premium
Services (35+ people); trainer; and consultant. Authored papers,
spoke at conferences, wrote corporate teaching materials, held
advanced classes, and managed many escalations at Danish C20
companies. Miracle A/S, 2000–2013: founder & CEO. Worked as
consultant, escalation manager, trainer, coach, and speaker.
Founded The OakTable Network. Authored internationally pub-
lished papers; lead author of Oracle Insights: Tales of the OakTable,
co-author of several other Oracle-related books. Fair & Square,
2013–present: Founder & CEO. Works as consultant, escalation
manager, trouble shooter, trainer, and speaker. CIMA, 2016–pres-
ent: Founder & CEO. CIMA does real, expert-level DevOps, AWS,
and Big Data/advanced analytics/machine learning—and is on
the way to becoming a leading data broker.

“Magazines should not be available anymore in print. Nor should they
(in my view) be available on a silly website that people have to go to using

a PC, a browser, and all sorts of other old-days technology. The smartphone
is the computer now. Move the NoCOUG Journal there aggressively.”

“Oracle User Groups are dead as such. Just like user groups for mainframe
operators or typesetters. You can make the downward sloping angle less steep

by doing all sorts of things, but it’s the same with all Oracle user groups
around the world. . . . Move onto the Net aggressively and do it with video

everywhere. . . . Let it be possible to upload video or audio or text
replies to debates and other things via a smartphone app.”

10
February 2018

B R I A N ’ S
N O T E S

JavaScript:
The Good Parts

Book Notes by Brian Hitchcock
Brian Hitchcock

Details

Author: Douglas Crockford

ISBN-13: 978-0-596-51774-8

Date of Publication: May 2008

Publisher: O’Reilly Media

Summary
I’m neither a programmer nor a developer, so why did I de­

cide to read this book? I’ve seen JavaScript in various places over
the years, and I was curious about how it works. Many years ago
I was required to take some basic Java programming training,
and I wondered what, if anything, was similar between Java and
JavaScript. I was looking for a single book to help me learn about
JavaScript, and a friend who works full time with JavaScript
strongly recommended this book. I read this book on Safari, and
I recommend that you do the same.

Preface
The author tells us that this book is intended for programmers

who are looking at JavaScript for the first time and those who
have been using it but want to learn more about how it works. I
don’t fall into either of those categories, but we will see what I
learn. Right away, I’m interested to discover that JavaScript is
“unconventional,” and a “small” language. I’m not sure what that
means when used to describe a programming language, but I will
play along. The goal of this book is to get the reader to think in
JavaScript versus simply learning the language. This book covers
only the most important parts of JavaScript and not everything
you might need to know.

And then we are told, “This book is not for beginners … This
book is not for dummies.” I’m sure I fall into the former and I’m
not sure I can be a reliable judge as to the latter. We are also told
that this book is dense; i.e., it covers a lot of ground quickly and

may require multiple readings before most of the material will
make sense.

Chapter 1: Good Parts
We get some background as to why the author wrote this

book. In a previous life, he would try to learn everything there
was to know about the languages he was working with and try to
use all the available features in his work. I appreciate the author’s
honesty that this was also driven by a desire to show off and to be
the expert in the group. This explains some of the things I have
seen in my years at work: things that were needlessly complicated
and virtually impossible to support. I’m intrigued to read that
languages have features that are simply design errors otherwise
known as mistakes. I’ve always assumed programming languages
were mostly magic, and when it was too complicated for me to
understand, it was because I was in that dummies group. Further,
it is pointed out that while a language may well be endorsed by a
standards group, that does not mean the mistakes have been re­
moved. Once a programming language has been used in the real
world, removing any part, no matter how bad, would cause exist­
ing bad programs to break. Yes, the author uses the phrase “bad
programs.” I like this book! Then we are told that standards usu­
ally add more features that may makes things worse, creating
more bad parts. And so, it goes.

From here, we are told that the best way forward is to accept
the mistakes, focus on the parts of a language that are good,
and—as much as possible—simply don’t use the bad parts. Ap­
parently, JavaScript has more bad parts than most languages,
since it went from nothing to global adoption so quickly that it
didn’t have time to be refined. It seems that when Java applets
failed, JavaScript became the standard for web programming.
The author feels very strongly about this point, as we learn that
JavaScript is buried under a steaming pile of good intentions and
was for a long time considered an unsightly, incompetent toy.
Wow! But how does the author really feel?

“Languages have features that are simply design errors otherwise known as
mistakes. . . . While a language may well be endorsed by a standards group,
that does not mean the mistakes have been removed. Once a programming

language has been used in the real world, removing any part, no matter
how bad, would cause existing bad programs to break.”

11
The NoCOUG Journal

While the book focuses on the parts of JavaScript that the
author wants us to use, it is clear that these parts are more than
enough to build worthwhile programs for both small and large
projects. Avoiding the bad parts of JavaScript does not mean that
you can’t get stuff done.

Given this background, the next section addresses why we
want to use JavaScript at all. The answer is simple: it’s the lan­
guage of the web browser, and therefore it’s one of the most
popular programming languages. It is also one of the most de­
spised. Such drama! It seems that JavaScript gets unfairly blamed
for the API of the browser, the awful Document Object Model
(DOM). I don’t know much about DOMs so I can’t comment on
this, but it sounds bad.

I’m amused to learn that with JavaScript, you can be produc­
tive while not knowing much about the language itself or pro­
gramming in general. The author says this indicates that
JavaScript has “expressive power.” We are advised, however, that
JavaScript is even better when you do know more about it.

A discussion of the good and bad parts of JavaScript follows.
The good parts are functions, loose typing, dynamic objects, and
an expressive object literal notation. The bad parts include
global variables. I learned that JavaScript is the first lambda lan­
guage to be widely used. I had no clue what a lambda language
is, so I looked it up—and I still have no idea. This is a good ex­
ample of what the author meant when he said that this book is
not for beginners. Finally, after so much discussion of what’s
wrong with JavaScript, comes the truly interesting question: why
should I use it? The answer is that you don’t have a choice. On
the other hand, JavaScript is really good and can be a lot of fun.
Overall, the good parts more than outweigh the bad. You just
have to know which is which and how to avoid the bad.

Given how much I don’t know about programming, I much
appreciate that with JavaScript, you can start writing simple pro­
grams right away with no other software. You just need a brows­
er. For a beginner like me this is a big deal. I don’t have to
download some bloated development environment or learn
commands to compile code. Nice. The unavoidable Hello World
program is shown, and I was able to make it work. Very nice!

Chapter 2: Grammar
This chapter covers what you would expect, given its title. We

see a number of railroad diagrams. I think they could have ex­
plained the use of white space better. I’m not sure what a fraction
means in JavaScript, but my guess is that it’s what I’d call a deci­
mal like 3.123. There is a discussion of an operation that can’t
produce a normal result; the result is NAN—which is not equal
to any value, including itself. This seems a lot like NULL in SQL.

Terms that are mentioned but not explained include linker,
namespace, function, and scope. It is assumed that we know
what these are. I will have to look elsewhere to understand a
prototype chain. Again, I am not complaining: I wanted to read
this book and I knew it wasn’t for beginners.

We are told that the grammar of just the good parts of
JavaScript is much easier than the grammar of the entire lan­
guage. Does that mean that if someone doesn’t know all of
JavaScript, it makes them a better JavaScript programmer? One
thing I did understand is that comments should only be done
using // at the end of the line. The comment form /* */ is not
good, because the same characters are used in regular expres­
sions. JavaScript has only one number type. There is no integer

type, so 1.0 and 1 are the same thing; this eliminates a lot of nu­
meric type errors.

There are sections covering strings, statements, expressions,
literals, and functions.

Chapter 3: Objects
In JavaScript, if something isn’t a number, a string, true or

false, null or undefined, it is an object. I now know that objects
are mutable keyed collections, and an object is a container of
properties where a property has a name and a value. Objects are
class-free—which is a departure for me from my Java training,
where classes were a big deal. Objects can inherit properties from

other objects using the prototype linkage feature. There are sec­
tions discussing object literals, retrieval, update, reference, pro­
totype, reflection, enumeration, delete, and global abatement—and
no: this has nothing to do with mosquitos. Here it means to
minimize the potential problems that come from using global
variables. You create a single global variable for your application.

There are code snippets illustrating all of this. I was able to
understand most of them. The first example starts with “var,”
which is not explained. I assume this means “variable,” but I’m
not sure; my background tells me that a variable is a number or
a string. I’m also not equipped to really understand the object.
prototype. It seems that all objects are linked to this in some
fashion.

Chapter 4: Functions
It turns out that functions are the best part of the best parts of

JavaScript. A function is an enclosed set of statements, and func­
tions are the basic modular piece of JavaScript. We are told that
programming in general really boils down to taking a set of re­
quirements and creating a set of functions and data structures.
That sounds easy. Functions are objects; so, like objects, func­
tions are a bunch of names with values and link to the object.
prototype. I fear I will have to do battle with this object.prototype
at the end of the game. I find it confusing that functions can be
stored in variables. The special thing about functions is that
while they are objects, they can be invoked. There are many sec­
tions describing invocation, arguments, exceptions, recursion,
and other topics. My favorites were curry and memoization. Try
to get memoization past your spell checker. “Curry” means that
you create a new function from a function and an argument.
“Memoization” means that functions use objects to store the re­

“The best way forward is to accept
the mistakes, focus on the parts of a

language that are good, and—as
much as possible—simply don’t use

the bad parts. Apparently,
JavaScript has more bad parts than
most languages, since it went from

nothing to global adoption so
quickly that it didn’t have time

to be refined.”

12
February 2018

sults of previous operations. Computing the Fibonacci numbers
is shown as an example of how to use memoization. Is memoiza­
tion a legal Scrabble word?

Chapter 5: Inheritance
This chapter tells us that inheritance in Java—which is re­

ferred to as a classical language—is a form of code reuse that can
reduce the cost of developing software. Inheritance is also good
because it specifies a system of types. This means that the pro­
grammer doesn’t have do any casting operations, which can
cause confusion and errors. JavaScript doesn’t cast but it sup­
ports many possible inheritance patterns. In classical languages,
objects are instances of classes and one class can inherit from
another class. JavaScript is a prototypal language where ob­
jects inherit directly from other objects.

There are sections on various aspects of inheritance, includ­
ing pseudo classical, object specifiers, prototypal, and parts.
Not having classes seems like a big departure to me, but it does
make things simpler.

Chapter 6: Arrays
The chapter begins with a definition of arrays that makes

them sound pretty cool: a linear allocation of memory where
elements are located using integers to compute offsets. Then we
are told that JavaScript has nothing like this. So sad! JavaScript
has an object that acts like an array. Array subscripts are con­
verted into strings that become properties. Overall, the JavaScript
implementation of arrays is much slower than a “real” array but
is more convenient, and the provided set of methods is very
good.

The following sections cover array topics, including literals,
length, delete, enumeration, confusion, methods, and dimen­
sions. JavaScript arrays are not limited to storing one type. There
is no out-of-bounds error; if you add an element beyond the
existing array, the array is automatically extended. If you reduce
the length of the array, the elements beyond the new length are
deleted. “Confusion” refers to the common challenge of when to
use an object versus an array; this is often done incorrectly.

Chapter 7: Regular Expressions
JavaScript is made up of many other languages: syntax from

Java, functions from Scheme, inheritance from Self, and regular
expressions from Perl. I had not heard of Scheme or Self, but they
are dialects of Lisp and Smalltalk, respectively. “Regular expres­
sions” are defined as specifications of the syntax of a simple
language. I don’t claim to understand that definition, but I

usually see regular expressions used with Perl, for example, to
extract text. In JavaScript, regular expressions provide a large
performance improvement over the equivalent string operation.
I have always found regular expressions hard to understand.
We are told that they can be complex because the same charac­
ter can be a literal in one position and an operator in another.
In general, regular expressions are hard to write and risky to
modify, which makes them hard to support. The author de­
scribes them as terse bordering on cryptic and almost indeci­
pherable. Given all of this, it is frustrating to learn that they are
widely used.

The following sections provide an example of a regular
expression and discuss the construction and elements of a
regular expression. Reading these sections demonstrates just
how confusing regular expressions can be. In JavaScript they are
also poor choices when it comes to handling internationaliza­
tion.

Chapter 8: Methods
This chapter is more of a reference section. It lists all the built-

in methods that JavaScript provides. There are sections covering
the methods for arrays, functions, numbers, objects, RegExp
(regular expression), and strings. In the array section we read
about the default comparison function that doesn’t test the type
of the array elements to be compared, so the result can be shock­
ingly incorrect. I am beginning to understand why there are so
many software bugs running around in the wild.

Chapter 9: Style
While the information in this interesting chapter isn’t re­

quired in order to master the JavaScript language, it is important.
It opens with a discussion of how complex software is and tells
us that maintaining software means converting one correct
program to a different, but still correct, program. This is chal­
lenging. With this in mind, good programs should be clear, and
what they are doing should be easily understood. Specific fea­
tures of JavaScript make this problematic. The loose typing
and high level of error tolerance mean that the compilation
process can’t detect many errors. The way to deal with this is to
be stricter as we write JavaScript programs. We are given spe­
cific ways to code in JavaScript that will eliminate many com­
mon errors. We are reminded that JavaScript was not designed
or implemented with quality in mind.

Chapter 10: Beautiful Features
This chapter is more philosophy than training. The author

tells us more about why this book focuses on the good parts of
JavaScript. I liked the statement that parsing is a big deal in com­
puting; this means that if you can write a compiler for a language,
this in itself is a way to demonstrate the completeness of that
language. Is this what goes on in computer science classes? The
good parts of JavaScript are listed, including functions as first-
class objects, dynamic objects with prototypal inheritance, and
object and array literals. The last paragraphs are worth reading
and thinking about. They state that all products have good parts.
An example is a microwave oven that has many more features
than anyone needs, so most people reduce the complexity to only
those functions that they use. These are the good parts of the
microwave oven. Finally, the last statement is that it would be
nice if products, including software, only had good parts. Of

“With JavaScript, you can start
writing simple programs right away

with no other software. You just
need a browser. For a beginner like

me this is a big deal. I don’t have
to download some bloated

development environment or learn
commands to compile code. ”

13
The NoCOUG Journal

course, it is not the user who determines which parts are good—
which makes designing products, including software, so difficult.

Appendix A: Awful Parts
Here we have a list of the bad parts of JavaScript that you

probably can’t avoid using, so you have to deal with them. You
won’t be surprised to see global variables at the top of this list.
There are many other sections, including Unicode, NaN, and
Falsy Values. The Unicode section interested me because it turns
out that JavaScript was designed back when Unicode was limited
to 64K characters. Unicode has grown to over a million charac­
ters since then. Since JavaScript only supports 16-bit characters,
it must use pairs of characters to represent Unicode characters. I
saw this on the job, years ago, when all the Kanji disappeared
from an application. It took me three days, but I found them—all
encoded as pairs of characters hiding in the database after a well-
intentioned Unicode conversion had been executed.

Appendix B: Bad Parts
Here we have a list of features that you can easily avoid. These

include the equality operators == and !=. These should be avoid­
ed in favor of === and !==. We should also avoid the continue
statement and many others.

Appendix C: JSLint
Back when C was new and exciting, the compilers didn’t catch

some common errors, so an additional program called lint was
built to check a source file for these known issues. The C lan­
guage matured and no longer needs lint, but JavaScript is still
immature, so we have JSLint. If we use JSLint, we can bring out
the elegant code that hides inside the sloppy language that is
JavaScript. There are many sections here, each describing how
JSLint helps find common errors. As always, global variables are
first to be examined.

Appendix D: Syntax Diagrams
The railroad diagrams are shown for all parts of JavaScript.

Appendix E: JSON
A very brief description of JSON is given, followed by a link

to the JSON organization website.

Conclusion
It is good for us to look outside of our familiar area of experi­

ence. I was curious about JavaScript, and while I didn’t under­
stand parts of this book, I’m glad I read it. Next, I plan to read a
beginner’s book on JavaScript. I realize that reading this book
first will seem illogical to most, but it worked for me. I’ll have
some background on the bigger design issues for JavaScript as I
go back and learn more of the basics. I will be looking for some
specific things while I move through the next book. It was good
for me to learn that programming languages, which appear to

be magic to the uninitiated, are products of humans and history.
JavaScript dealt with a set of problems that needed to be solved.
It isn’t pretty, but it was, as most things in history are, in the
right place at the right time. If you are interested in something
outside your usual technical experience, don’t resist: just start
learning about it. Don’t worry if you are starting in the right
place or not; you will learn something that will guide you as you
learn more. s

Brian Hitchcock works for Oracle Corporation where he has been
supporting Fusion Middleware since 2013. Before that, he sup-
ported Fusion Applications and the Federal OnDemand group. He
was with Sun Microsystems for 15 years (before it was acquired by
Oracle Corporation) where he supported Oracle databases and
Oracle Applications. His contact information and all his book
reviews and presentations are available at www.brianhitchcock.
net/oracle-dbafmw/. The statements and opinions expressed here
are the author’s and do not necessarily represent those of Oracle
Corporation.

Copyright © 2018, Brian Hitchcock

DATABASE MANAGEMENT SOLUTIONS
Develop | Manage | Optimize | Monitor | Replicate

Maximize your
Database Investments.

“Programming languages, which appear to be magic to the uninitiated,
are products of humans and history. JavaScript dealt with a set of problems

that needed to be solved. It isn’t pretty, but it was, as most things in
history are, in the right place at the right time. ”

http://www.brianhitchcock.net/oracle-dbafmw/
http://www.brianhitchcock.net/oracle-dbafmw/
http://www.quest.com

14
February 2018

S P E C I A L
F E AT U R E

Editor’s Note: This article contains information on Oracle licens-
ing that is provided as-is and without guarantee of applicability or
accuracy. Given the complex nature of Oracle licensing and the
ease with which license compliance risk factors can change signifi-
cantly due to individual circumstances, readers are advised to ob-
tain legal and/or expert licensing advice independently before
performing any actions based on the information provided.

Over my last three articles in the NoCOUG Journal, I
have covered Oracle licensing in third-party
clouds. My discussion has focused on deploying
traditional, on-premises Oracle license entitle­

ments in public cloud environments like Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP).
I touched on Oracle Cloud only briefly.

In this article, I will focus on Oracle Cloud. To narrow the
scope of the discussion, I will look at deploying existing license
inventories in Oracle’s different cloud offerings. I will also go
over the key contractual documents involved.

The article will focus primarily on Oracle Cloud’s IaaS offer­
ings, and briefly touch on PaaS (specifically, Database service).
We will skip SaaS offerings for the time being. That’s not to imply
there isn’t much to talk about with SaaS: understanding SaaS
contracts and optimizing your investment in Oracle’s SaaS envi­
ronments are important topics. Much can be said about the
myriad SaaS offerings and their service descriptions and metrics.

A comparison of Oracle Cloud with other cloud providers,
from an offerings and pricing perspective, is beyond the scope of
this article.

The Basics—Processors, NUPs, and OCPUs
As discussed in my previous NoCOUG Journal articles,

Oracle’s traditional, on-premises licensing includes several met­
rics for different products. However, the Processor and Named
User Plus (NUP) metrics are predominant for database, middle­
ware, and several applications products.

To recap, the number of Processor licenses required for a
product depends on the number of cores running the Oracle

software; the core count is then multiplied by a contractually de­
fined Processor Core Factor. This is based on the chip type and
is 0.5 for most x86 CISC processors. For example, suppose we are
licensing Database Enterprise Edition on a server with one Xeon
processor with eight cores. We would need: 1 processor * 8 cores
* 0.5 (core factor) = 4 Processor licenses

The Processor license metric has not changed much since the
early 2000s. The other long-running metric is the NUP metric.
As its name suggests, it’s based on actual, named users. However,
it still has processor-related minimum requirements. For data­
bases, it’s a minimum of 25 NUPs per processor; for middleware
products, it’s generally ten NUPs per processor. Customers must
license the higher of the actual number of users and minimums
based on processor counts.

The OCPU
With the emergence of Oracle Cloud, Oracle introduced

a virtual, cloud-based Processor metric called OCPU (Oracle
documentation defines OCPU as Oracle Compute Unit.
Shouldn’t that be “OCU”?). Several months ago, the Oracle
Cloud website provided a clear and unambiguous definition of
what an OCPU is (which I covered in my first NoCOUG Journal
article on the topic). The website stated: “one physical core of an
Intel Xeon processor with hyper-threading enabled. Each OCPU
corresponds to two hardware execution threads . . .” In short,
an OCPU core was equivalent to a physical processing core.
Strangely, the current website does not clearly document this.
For that information, you must dig into the IaaS and PaaS Cloud
service descriptions document at www.oracle.com/us/corporate/
contracts/paas-iaas-public-cloud-2140609.pdf.

An obvious question arises: what is the contractually correct
way to translate existing Processor license entitlements to their
OCPU equivalents? Fortunately, this is well documented in the
Important Notes section of Oracle’s Processor Core Factor Table
located at www.oracle.com/us/corporate/contracts/processor-
core-factor-table-070634.pdf. It’s crucial to note that this docu­
ment is contractually binding because—unlike Oracle’s policy on

Oracle Licensing in
the Cloud—Part IV

by Mohammad Inamullah
Mohammad Inamullah

“Oracle introduced a virtual, cloud-based Processor metric called OCPU …
One Processor license will cover two OCPUs. This is consistent with what

customers would be doing on premises. One Processor license will cover two
Xeon cores, irrespective of whether hyper-threading is enabled.”

http://www.oracle.com/us/corporate/contracts/paas-iaas-public-cloud-2140609.pdf
http://www.oracle.com/us/corporate/contracts/paas-iaas-public-cloud-2140609.pdf
http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf
http://www.oracle.com/us/corporate/contracts/processor-core-factor-table-070634.pdf

15
The NoCOUG Journal

licensing in third-party clouds—the Processor Core Factor Table
is not just a policy; it is contractually referenced by your OLSA/
OMA Oracle agreements.
	 1.	 The first important takeaway from the Processor Core

Factor Table is that one Processor license will cover two
OCPUs. This is consistent with what customers would be
doing on premises. One Processor license will cover two
Xeon cores, irrespective of whether hyper-threading is
enabled. As such, the translation to OCPU is quite reason­
able and appears to be consistent with the value customers
would be getting on premises.

	 2.	 Second, the NUP minimums are consistent with customer
requirements for on-premises NUP licensing.

	 3.	 Third, the Ravello service uses the vCPU metric, so it’s no
surprise that these are correlated as hyper-threads, with
two threads equivalent to a physical core. As such, one
Processor license covers four Ravello vCPUs.

	 4.	 Finally, for Standard Edition products, customers can be at
a disadvantage with this update. As documented, one Pro­
cessor license will only cover four OCPUs. However, in the
on-premises world, Standard Edition products are li­
censed by the number of occupied sockets and not core
counts (SE2 did place a limit, though). For example, a
customer could deploy Database Standard Edition on one
occupied socket with 16 or 20 cores and still only need one
Processor license, since only one socket was occupied.
However, the update limits that in Oracle Cloud. One Pro­
cessor license will only cover up to four OCPUs, function­
ally equivalent to four physical cores.

With a discussion of OCPU and Processor metrics and calcu­
lating equivalents out of the way, let’s look at some of the Oracle
Cloud offerings and discuss the value and compliance consider­
ations for each.

Oracle PaaS
Upon browsing the Oracle PaaS website, one sees over 40

PaaS offerings. The database service features options for shared
tenancy and dedicated, bare-metal server hosting. Among the
shared tenancy options, there are license-included and bring
your own license (BYOL) options. For license-included options,
there are services with Database Standard Edition 2 and Enter­
prise Edition. Depending on the Enterprise Edition package
selected, various options and management packs are included in
the license. The top-end service includes RAC, In-Memory, and
Active Data Guard.

The BYOL service options require the customer to bring ex­
isting licenses for Database SE, SE1, SE2, or EE, depending on
the service selected. Interestingly, while customers are mostly
expected to bring licenses for any options and packs they will
use, some options and packs are included for free for the Enter­
prise Edition services. Specifically, Data Masking and Subsetting
Pack, Diagnostics and Tuning Packs, and Real Application
Testing are included for free. By comparison, it’s worth noting
that AWS RDS with Oracle Database Enterprise Edition does not
include any options or management packs.

Likewise, bare-metal hosting options include license-included
and BYOL options. Similar to the shared-tenancy options, the
hosting options variously include some to most of the important
options and management packs.

For all BYOL situations, it’s the customer’s responsibility to
have sufficient licenses to cover the underlying OCPUs.

For anyone considering Oracle Cloud Database service, I
would recommend reviewing their Database service documenta­
tion portal located at https://docs.us-phoenix-1.oraclecloud.
com/Content/Database/Concepts/databaseoverview.htm.

Oracle IaaS
Oracle IaaS offerings cover several infrastructure areas, in­

cluding compute, networking, storage, and others.
The Compute service, comparable to AWS’s EC2 service, pro­

vides several instance-sized options for bare-metal and shared-
tenancy virtual machines. Oddly, Oracle’s website also lists

“Database” under the IaaS section. I find this odd, since the same
Database services, with identical prices, are also a subset under
the Database PaaS services webpage. Stranger still is that it costs
the same as the Database PaaS service.

While IaaS makes sense for general computing purposes, does
it make sense to use Oracle IaaS options over PaaS where PaaS
services are available? For example, does it make sense for cus­
tomers to launch a compute instance and install their own Oracle
Database? Especially when a similar PaaS service is also offered?
For the most part, for customers looking to benefit from optimi­
zation and reduce management costs, PaaS options tend to make
more sense than comparable IaaS options. However, there is one
subtle benefit IaaS provides: it presumably gives Oracle less in­
sight into what’s going on inside the instance. This can be impor­
tant in the event of a license audit. For Oracle’s auditors, it would
be infeasible to automatically extract usage details for a manually
installed Oracle Database or WebLogic installation in an IaaS
instance. For PaaS, there is no reason to believe the auditors
would have any difficulty in extracting usage details on options
and packs without much involvement from the customer. The
IaaS alternative would add a few layers of complexity for the au­
ditors and likely place more control of the audit back in the
hands of the customer.

The CSA, the Cloud Computing Policy, and Other
Important Documents

The Oracle Cloud Services Agreement (CSA) is the key agree­
ment underlying a customer’s Oracle Cloud relationship. The
U.S. CSA is located at www.oracle.com/us/corporate/contracts/
saas-online-csa-us-1894130.pdf.

The document is 11 pages long and, like every other Oracle
licensing document, should be read carefully and thoroughly.
Too many of my clients have signed CSAs without reading them
and understanding their key points. I’ll go over some of the im­
portant points below:

“The Ravello service uses the vCPU
metric, so it’s no surprise that these
are correlated as hyperthreads, with
two threads equivalent to a physical
core. As such, one Processor license

covers four Ravello vCPUs.”

https://docs.us-phoenix-1.oraclecloud.com/Content/Database/Concepts/databaseoverview.htm
https://docs.us-phoenix-1.oraclecloud.com/Content/Database/Concepts/databaseoverview.htm
http://www.oracle.com/us/corporate/contracts/saas-online-csa-us-1894130.pdf
http://www.oracle.com/us/corporate/contracts/saas-online-csa-us-1894130.pdf

16
February 2018

	 1.	 Definitions: While it’s important to review and under­
stand all the definitions in this section, a few are worth
pointing out.
a.	 “Data Center Region” is the geographic location

where your service will reside. It will be specified on
the order document. It’s important to ensure that the
region is noted correctly on the ordering document
and is as expected.

b.	 “Service Specifications” provides technical details on
the services. These can be accessed at www.oracle.
com/us/corporate/contracts/cloud-services/index.
html. The documents and service descriptions pro­

vide important technical details on the services pro­
vided. Readers can further drill town to specific ser­
vice details. For example, key terms and details for the
IaaS and PaaS services can be found via links under
the “ORACLE PLATFORM AS A SERVICE (PAAS)
AND INFRASTRUCTURE AS A SERVICE (IAAS)”
section.

	 2.	 Audit clause: Section 23.8 establishes the audit clause.
Oracle’s OMA and OLSA agreements have defined audit
clauses for decades; these stipulate that Oracle may initiate
an audit “upon 45 days’ notice.” However, the CSA audit
clause is different in that it gives the customer no notice
period. In short, Oracle can initiate an audit with no
warning and expect immediate cooperation. The custom­
er will have little or no time to do any stock-taking. Fur­
thermore, given the nature of data that Oracle may already
have due to Oracle Cloud usage, Oracle auditors may be
able to drive the audit more rapidly than expected.

	 3.	 On an interesting note, Section 23.4 states that “Oracle
Programs and Services are not designed for or specifically
intended for use in nuclear facilities or other hazardous
applications . . .” I found this interesting.

	 4.	 Service analyses: Not unexpectedly, Oracle uses your in­
formation to compile usage and performance statistics for
a variety of reasons.

On another note, the Oracle policy document titled “Licensing
Oracle Software in the Cloud Computing Environment,” and the
restrictive policies mentioned therein, does not apply to Oracle
Cloud.

Additionally, I strongly recommend readers to review the
service descriptions and metrics documents located at the Oracle
Cloud Services website mentioned above (www.oracle.com/us/
corporate/contracts/cloud-services/index.html). These docu­
ments contain specific details for the different cloud offerings
across SaaS, PaaS, and IaaS. Customers should navigate to spe­
cific Oracle Cloud documentation and ensure that they under­
stand the technical and metric details for the product of interest.
Suppose a customer is interested in the Oracle InForm Clinical
Trials SaaS service. The customer would find important metric
and service details via this portal in the form of the InForm Trial
Capacity Cloud Service document located at www.oracle.com/
us/corporate/contracts/ohs-trial-capacity-cloud-service-
sd-2952144.pdf.

A Note on Oracle Unlimited License Agreements (ULAs)
and Oracle Cloud

As I discussed in my previous articles on Oracle licensing in
third-party clouds, Oracle’s policy on cloud licensing in third-
party clouds introduces several non-contractual limitations and
restrictions for Oracle ULA customers. This includes the restric­
tion that ULA customers may not claim cloud-deployed Oracle
program quantities in their ULA certification. In the case of
Oracle Cloud, I am not aware of any similar limitations through
any of the Oracle Cloud documents. In other words, there is no
reason for customers to have any issues with claiming their de­
ployments in Oracle Cloud as part of their ULA certification
quantities.

Value and Compliance—Key Considerations for Oracle
Cloud

When assessing the value and compliance factors for Oracle
Cloud offerings, customers should keep in mind several impor­
tant factors:

	 1.	 The list price for license-included versus BYOL climbs
very rapidly. A thorough analysis of Oracle Cloud vs. on-
premises costs is beyond the scope of this article, but
customers should perform a thorough, multi-year analysis
of the expected costs.

	 2.	 A complicating factor for license audits would be order of
precedence of the audit clauses in the CSA and OMA/
OLSA. I have not come across this problem yet, but if
Oracle audits a cloud customer, issues of audit scope will
complicate things right away.

	 3.	 It’s easy to see apparent cost savings in moving on-prem­
ises workloads to the Oracle Cloud. For example, there
may be some cost savings if some additional options and

“Does it make sense to use Oracle
IaaS options over PaaS where PaaS
services are available? For example,
does it make sense for customers to

launch a compute instance and
install their own Oracle Database?

Especially when a similar PaaS
service is also offered? ”

“Oracle’s OMA and OLSA agreements have defined audit clauses
for decades; these stipulate that Oracle may initiate an audit “upon

45 days’ notice.” However, the CSA audit clause is different in
that it gives the customer no notice period. ”

http://www.oracle.com/us/corporate/contracts/cloud-services/index.html
http://www.oracle.com/us/corporate/contracts/cloud-services/index.html
http://www.oracle.com/us/corporate/contracts/cloud-services/index.html
http://www.oracle.com/us/corporate/contracts/cloud-services/index.html
http://www.oracle.com/us/corporate/contracts/cloud-services/index.html
http://www.oracle.com/us/corporate/contracts/ohs-trial-capacity-cloud-service-sd-2952144.pdf
http://www.oracle.com/us/corporate/contracts/ohs-trial-capacity-cloud-service-sd-2952144.pdf
http://www.oracle.com/us/corporate/contracts/ohs-trial-capacity-cloud-service-sd-2952144.pdf

17
The NoCOUG Journal

packs are needed. Customers should model the pricing for
several years and factor in at least the following:
a. 	 Quantify licenses they own and those they need, and

the most economical way to bridge the gap—that is,
buying additional on-premises licenses or availing
themselves of products freely bundled into the Oracle
Cloud offerings.

b.	 The ongoing cost of physical, on-premises options.
c.	 Comparison of the cost of their on-premises options,

along with their license investment and annual sup­
port spend, to the different Oracle Cloud options
(PaaS, license-included and BYOL, and IaaS + licens­
ing costs, etc.).

d.	 Customers can expect to get some Oracle Cloud cred­
its for migrations of existing license entitlement.
However, it’s important to remember that this is a
one-way decision; there is no realistic way to back out.
Once you trade in on-premises Oracle licenses for
cloud credits, you will not be able to get them back if
you decide to leave Oracle Cloud.

e.	 Renewal pricing: what happens when the Oracle
Cloud subscription term expires? Oracle would be
glad to sell long, multi-year Cloud contracts, but cus­
tomers should seriously consider what will happen to
pricing for subsequent renewals.

	 4.	 Compliance should still be a top priority in Oracle Cloud.
While it is unlikely that Oracle will target its customers
soon for license audits in the Oracle Cloud environment,
there is no reason to become lax about this. With BYOL
options, customers still have the responsibility to ensure
that they are compliant in their processor-to-OCPU calcu­
lations and that their license entitlements sufficiently
cover their usage. Additionally, customers still have to
ensure that any user-based NUP licenses are sufficiently
budgeted.

	 5.	 Some licensing rules and pricing may be different from
traditional on-premises options. This is important for
value and compliance calculations. In some cases metered
vs. non-metered choices can have a significant value im­
pact as well. For example, if a customer is considering
Oracle GoldenGate in the cloud, the metered, pay-as-you-
go option will cost around $1,000 per OCPU/month. On
the other hand, the non-metered, flat-fee option is $3,000
per OCPU/month. When customers hear pitches about
the economics of non-metered options, they ought to re­
view and understand these details independently in order
to make an informed decision.

In summary, Oracle Cloud represents an obvious cloud op­
tion for existing Oracle customers. However, getting the best

value out of the move—in the short and long terms—and guard­
ing against compliance issues requires customers to perform
thorough due diligence. s

Addendum: This addendum is relevant to my prior articles in the
NoCOUG Journal; it concerns recent changes in Azure’s compute
offerings and corresponding changes to Oracle’s licensing policy in
third-party cloud environments.

In April 2017, Microsoft started introducing vCPU-based
compute options for its VMs. According to Microsoft, one vCPU
corresponds to one hyper-thread on its latest class of Intel Xeon
processors. This approach mirrors AWS’s vCPU approach to its
EC2 and RDS services, in which instance horsepower is defined in
terms of hyper-threads. Previously, Microsoft’s offerings were solely
calibrated using CPU cores and ignored Intel’s hyper-threading ca-
pability. Over the course of 2017, Azure introduced several classes
of vCPU-based compute options. While core-based compute classes
still exist, it’s clear that Microsoft is moving to a vCPU approach.
Accordingly, in January 2018, Oracle’s policy document titled
“Licensing Oracle Software in the Cloud Computing Environment”
was updated, presumably to accommodate this change in Azure.
The updated policy now provides mirror language for AWS (EC2
and RDS) and Azure. Previously, one CPU core in Azure corre-
sponded to one Oracle Processor license. Now, however, according
to the updated policy, if hyper-threading is enabled, two Azure
vCPUs correspond to one Oracle Processor license. If hyper-thread-
ing is not enabled, one Azure vCPU corresponds to one Oracle Pro
cessor license. The guidance for Database Standard Edition (SE)
licensing is also updated. Database SE may only be licensed in
Azure instances with up to 16 vCPUs; the prior limit was eight
CPU cores. Similarly, Database SE1 and SE2 may only be licensed
in Azure instances with up to eight vCPUs; the prior limit was four
CPU cores.

Also new in this policy update is that Oracle has taken a posi-
tion on the use of named-user licenses in the AWS and Azure
clouds. According to the policy update, if Database SE2 is being li-
censed by Named User Plus (NUP) licenses, customers must license
at least ten NUPs per eight AWS vCPUs or eight Azure vCPUs.
Strangely though, the policy provides no minimum-NUP guidance
for the older products—Database SE and Database SE1.

While readers should be aware of Oracle’s policy changes, my
central position remains the same: Oracle’s policy on licensing
Oracle software in third-party clouds is of no contractual value,
and customers should not allow Oracle to bring this policy into
their purchasing and licensing discussions.

Mohammad Inamullah is the Principal at Redwood Compliance
in Palo Alto, California. He can be reached at mohammad@
redwoodcompliance.com.

© 2018 Mohammad Inamullah

“Oracle’s policy on cloud licensing in third-party clouds introduces the
restriction that ULA customers may not claim cloud-deployed Oracle

program quantities in their ULA certification. In the case of Oracle Cloud,
there is no reason for customers to have any issues with claiming their

deployments in Oracle Cloud as part of their ULA certification quantities. ”

mailto:mohammad%40redwoodcompliance.com?subject=
mailto:mohammad%40redwoodcompliance.com?subject=

18
February 2018

S P E C I A L
F E AT U R E

Oracle Database 12c Release 2 (12.2) is available
on Oracle Cloud and on-premises. With it comes a
host of new features to help you write better, faster
applications. Here’s my rundown of the top 12 new

features to help you when developing applications for Oracle
Database.

Top Feature I—JSON from SQL
12.1.0.2 brought JSON support to Oracle Database. This

helped you work with JSON documents stored in clobs or var­
char2s. These are fantastic, but storing raw JSON should be the
exception, not the norm. Most of the time you should shred your
JSON documents into relational tables. This leaves you with a
problem though: getting the data back out in JSON format.
Trying to write your own JSON generator is difficult, so in 12.2
we offer a whole host of options to help you get the job done. 12.2
provides four key functions to help you write SQL that returns
data in JSON format:

➤	 JSON_object
➤	 JSON_objectagg
➤	 JSON_array
➤	 JSON_arrayagg
You use the JSON_object* functions to create a series of key-

value pair documents—i.e., the output has curly braces {}. The
JSON_array* functions take a list of values and return it as an
array—i.e., in square brackets []. For each row in the input, the
non-agg versions of these functions output a row. The agg ver­
sions combine multiple rows into a single document or array.
How do these work? Let’s look at an example.

Say you’re using the classic employees and departments ta­
bles. For each department you want a JSON document that con­
tains:

➤	 The department name
➤	 An array of its employees
➤	 Each element of this array should be its own document,

listing the employee’s name and their job title.
For example:

{
 "department": "Accounting",
 "employees": [
 {
 "name": "Shelley,Higgins",
 "job": "Accounting Manager"

 },
 {
 "name": "William,Gietz",
 "job": "Public Accountant"
 }
]
}

How do you create this using the new functions? Let’s work
from the inside out:

First you need a document for each employee. This has two
attributes: name and job. Pass these into a JSON_object call.

Then you need to turn these into an array. Wrap the JSON_
object in a JSON_arrayagg, and group by department to split the
employees for each one into a separate array.

Finally you have a single document per department, so you
need another JSON_object with department and employees at­
tributes. The values for these are the department name and the
results of the JSON_arrayagg call in the previous step.

Put it all together and you get:

select json_object (
 'department' value d.department_name,
 'employees' value json_arrayagg (
 json_object (
 'name' value first_name || ',' || last_name,
 'job' value job_title)))
from hr.departments d, hr.employees e, hr.jobs j
where d.department_id = e.department_id
and e.job_id = j.job_id
group by d.department_name;

And voila! You have your JSON.

Top Feature II—JSON in PL/SQL
Now you have your JSON document, but what if you want to

edit it? Say you want to change the names to uppercase and add
a title element. The previous document becomes:
{
 "department": "Accounting",
 "employees": [
 {
 "name": "SHELLEY,HIGGINS",
 "job": "Accounting Manager",
 "title": ""
 },
 {
 "name": "WILLIAM,GIETZ",
 "job": "Public Accountant",
 "title": ""
 }
]
}

12 Things Developers
Love About Oracle

Database 12c Release 2
by Chris Saxon Chris Saxon

19
The NoCOUG Journal

special
F eature

If you’re generating the document, it’s easiest to add these in
the SQL (this presumes you want to change a JSON document
from an external source). To help with this, there are new PL/
SQL objects that enable you to access, modify, and add elements
to a JSON document with get/put calls.

The key object types are as follows:

➤	 json_element_t—a supertype for documents and arrays
➤	 json_object_t—for working with JSON documents
➤	 json_array_t—for working with JSON arrays

The first thing you need to do is create the JSON object. Do
this by parsing the document:

doc := json_object_t.parse('
 {
 "department": "Accounting",
 "employees": [
 {
 "name": "Shelley,Higgins",
 "job": "Accounting Manager"
 },
 {
 "name": "William,Gietz",
 "job": "Public Accountant"
 }
]
 }
');
You can then access the employees array using get:
emps := treat(doc.get('employees') as json_array_t) ;

The treat function casts the element to the appropriate type
(JSON_array_t here). Once you have the array, you can loop
through the employees. Put adds a new key if it’s not already
present; otherwise it overwrites the existing value.

for i in 0 .. emps.get_size - 1 loop
 emp := treat(emps.get(i) as json_object_t);
 emp.put('title', '');
 emp.put('name', upper(emp.get_String('name')));
end loop;

The get functions return a reference to the original object. If
you get some JSON and modify it, the original document also
changes. If you don’t want this, clone the element when you get
it. For example:

emps := treat(doc.get('employees') as json_array_t).clone

The complete PL/SQL block to transform the JSON is

declare
 doc json_object_t;
 emps json_array_t;
 emp json_object_t;
begin
 doc := json_object_t.parse('{
 "department": "Accounting",
 "employees": [
 {
 "name": "Shelley,Higgins",
 "job": "Accounting Manager"
 },
 {
 "name": "William,Gietz",
 "job": "Public Accountant"
 }
]
}');

 emps := treat(doc.get('employees') as json_array_t) ;

 for i in 0 .. emps.get_size - 1 loop
 emp := treat(emps.get(i) as json_object_t);
 emp.put('title', '');
 emp.put('name', upper(emp.get_String('name')));

 end loop;

 dbms_output.put_line(doc.to_String);
end;
/

{
 "department": "Accounting",
 "employees": [
 {
 "name": "SHELLEY,HIGGINS",
 "job": "Accounting Manager",
 "title": ""
 },
 {
 "name": "WILLIAM,GIETZ",
 "job": "Public Accountant",
 "title": ""
 }
]
}

Now you can generate JSON from SQL and change it in PL/
SQL; you have powerful options to work with it, and there are a
raft of other improvements to JSON functionality in 12.2. Other
enhancements include:

➤	 JSON_exists function
➤	 Support for In-Memory, Partitioning and Materialized Views
➤	 Search indexes
➤	 GeoJSON
➤	 JSON Data Guide

If you’re desperate to work with JSON, I recommend check­
ing these out.

Top Feature III—Loooooooooooooooong Names
“There are only two hard things in Computer Science: cache in­
validation and naming things.”—Phil Karlton

Oracle Database handles cache invalidation for you. As a de­
veloper you don’t have to worry about this, but when it comes to
naming things, we’ve made it harder than it ought to be. Why?
Take the following example:

alter table customer_addresses add constraint
 customer_addresses_customer_id_fk
 foreign key (customer_id)
 references customers (customer_id);

Looks like a standard foreign key creation, right? But there’s a
problem. Run it and you’ll get:

SQL Error: ORA-00972: identifier is too long

Aaarrghh! The constraint name is just a tiny bit too long.
Staying within the 30-byte limit can be tricky, particularly if you
have naming standards you have to follow. As a result, many
people have asked for us to allow longer names. Starting in 12.2
we’ve increased this limit. The maximum is now 128 bytes. Now
you can create objects like:

create table with_a_really_really_really_really_really_long_name (
 and_lots_and_lots_and_lots_and_lots_and_lots_of int,
 really_really_really_really_really_long_columns int
);

Remember: the limit is 128 bytes, not characters. If you’re
using a multi-byte character set, you’ll find you can’t create:

create table tablééé (
 is_67_chars_but_130_bytes int
);

20
February 2018

This is because é uses two bytes in character sets such as
UTF8. So even though the string above is only 67 characters, it
needs 130 bytes. I know some of you are desperate to startCrea­
tingTablesWithRidiculouslyLongNames. But before you rush
out to do so, check your code. If your dev team uses sloppy cod­
ing practices, there may be some traps waiting for you . . .

Top Feature IV—Robust Code Using Constants for Data
Type Lengths

Most applications have at least one piece of PL/SQL that
selects from the data dictionary. For example:

begin
 select table_name
 into tab
 from user_tables
 where ...

Because the maximum length of a table name has been 30
bytes forever, some developers took to declaring the variable as
follows:

declare
 tab varchar2(30);

Who needs more than 30 characters, right? But, as we just
saw, upgrade to 12.2 and the limit is now 128 bytes. It’s only a
matter of time before people create tables with longer names.
Eventually this code will fail with:

ORA-06502: PL/SQL: numeric or value error: character string buffer too small

What to do?
It would be nice if you could change the maximum length of

a varchar2 dynamically. Then, instead of combing through your
PL/SQL and changing varchar2 (30) to varchar2 (128), you
could increase the size in a single place. Fortunately, in 12.2 you
can. The new release enables you to declare a variable length
using a constant. That means you could create a constants pack­
age:

create or replace package constants as
 tab_length constant pls_integer := 128;
end constants;
/

And then use it when declaring your variables:

declare
 tab varchar2(constants.tab_length);

If we ever increase the length of names again, you only need to
make one change: the constant’s value. Note that these aren’t fully
dynamic. The PL/SQL compiler has to know the value for the
variable size at compile time. This means you can’t base it on the
results of a query. User-defined functions are also out. In order
to enable the variable to hold longer strings, you need to increase
the value of constants.tab_length and recompile your code.

You may be thinking that for something as common as object
names, surely Oracle provides something stating their max
length? The good news is that we do. In DBMS_STANDARD
you’ll find new constants, including ora_max_name_len. As the
name suggests, this states the maximum length for object names.
Therefore, you can change your table name variable declarations
to:

declare
 tab varchar2(ora_max_name_len);
begin

The best part is that you can make your code futureproof now.
By using conditional compilation you can change your data dic­
tionary–based variable declarations to:

declare
 $if DBMS_DB_VERSION.VER_LE_12_1 $then
 tab varchar2(30);
 $else
 tab varchar2(ora_max_name_len);
 $end

Then when you upgrade, the tab variable will automatically
have the larger limit. You may be thinking that it sounds like a lot
of work . . . and you’re right. You can also make your variables
12.2 compatible now with type anchoring:

declare
 tab user_tables.table_name%type;

Whichever method you use, start preparing your code now. It
may be a long time until you upgrade, but the more robust your
code is, the easier it’ll be for you to use the new features.

Variable declarations are one of the more obvious problems
you’ll meet with longer names. Let’s look at a more subtle issue.

Top Feature V—Listagg Improved on Overflow
The following query returns a comma-separated list of in­

dexes for each table in your schema:

select table_name,
 listagg(index_name, ','
) within group (order by index_name) inds
from user_indexes
group by table_name;

This is all very well and good, but there’s a potential prob­
lem. Listagg() returns a varchar2. This is limited to 4,000 bytes
(32,767 if you’re using extended data types). In 12.1 and 11.2,
you needed 130 or more indexes on a table before you started
running into issues. If you have that many indexes on one table,
you’ve got bigger problems than hitting this limit. However, this
changes in 12.2. With longer names, you could hit this limit at
just over 30 indexes on a table. While still a large number, this is
plausible, particularly in reporting databases and data ware­
houses. Also, you can be sure that someone, somewhere will start
creating “self-documenting” indexes, such as:

create index
 reducing_the_monthly_invoice_run_
 from_four_hours_to_three_minutes_
 PROJ12345_make_everything_faster_
 csaxon_thanks_everyone_yeah_baby on ...

Create too many of these and your listagg query will throw
frustrating ORA-01489 errors. To get around this is tricky, so in
12.2 we’ve added an overflow clause. To use it, place “on overflow
truncate” after the separator:

 select table_name,
 listagg(index_name, ','
 on overflow truncate
) within group (order by index_name) inds
 from user_indexes
 group by table_name;

With this in place, instead of an exception your output will
now look something like the following:

21
The NoCOUG Journal

...lots_and_lots_and_lots,of_indexes,...(42)

The “…” at the end indicates that the output is larger than
Oracle can return. The number in brackets reflects how many
characters Oracle trimmed from the results. So not only can you
see that there is more data, you can also get an indication of how
much there is. The full syntax of this is:

 listagg (
 things, ','
 [on overflow (truncate|error)]
 [text] [(with|without) count]
) within group (order by cols)

Now you can explicitly say whether you want error or trunca-
tion semantics. There’s a good chance that you’ve already written
code to handle the ORA-1489 errors. To keep the behavior of
your code the same, the default remains error. The text and count
clauses control what appears at the end of the string. If you want
to replace “...” with “more,” “extra,” or a “click for more” hyper-
link, just provide your new string.

 select table_name,
 listagg(index_name, ','
 on overflow truncate
 'click here'
) within group (order by index_name) inds
 from user_indexes
 group by table_name;

You can also remove the number of trimmed characters by
specifying “without count.”

Top Feature VI—Lightning-Fast SQL with Real-Time
Materialized Views

Materialized views (MVs) can give an amazing performance
boost. Once you create one based on your query, Oracle can get
the results directly from the MV instead of executing the state-
ment itself. This can make SQL significantly faster, especially
when the query processes millions of rows, but there are only a
handful in the output.

There’s just one problem: The data in the MV has to be fresh;
otherwise, Oracle won’t do the rewrite. You could, of course,
query the MV directly, but the data will still be old. So, you need
to keep the materialized view up to date. The easiest way is to
declare it as “fast refresh on commit,” but this is easier said than
done. Doing this raises a couple of issues:

➤	 Only some queries support on commit refreshes.
➤	 Oracle serializes MV refreshes.
If you have complex SQL, you may not be able to use query

rewrite. And even if you can, on high-transaction systems the
refresh overhead may cripple your system. So, instead of “fast
refresh on commit,” you make the MV “fast refresh on demand”
and create a job to update it that runs every second. But no matter
how frequently you run the job, there will always be times when
the MV is stale; query performance could switch between light-
ning fast and dog slow—a guaranteed way to upset your users.

How do you overcome this? With real-time materialized
views. These give the best of both worlds. You can refresh your
MV on demand but still have it return up-to-date information.
To do this, create the MV with the clause “on query computa-
tion.” For example:

create table t (
 x not null primary key, y not null) as

 select rownum x, mod(rownum, 10) y from dual
 connect by level <= 1000;

create materialized view log on t
with rowid (x, y) including new values;

create materialized view mv
refresh fast on demand
enable on query computation
enable query rewrite
as
 select y , count(*) c1
 from t
 group by y;

With this, you can add more data to your table:

insert into t
 select 1000+rownum, 1 from dual
 connect by level <= 100;

commit;

Oracle can still use the MV to rewrite—even though the MV is
stale.

select /*+ rewrite */y , count(*) from t
group by y;

It does this by:

➤	 Querying the stale MV
➤	 Applying the inserts, updates, and deletes in the MV log to

it

This can lead to some scary-looking execution plans.

The point to remember is that Oracle is reading the material-
ized view log and then applying the changes to the MV. The
longer you leave it between refreshes, the more data there will be.
You’ll need to test to find the sweet spot between balancing the
refresh process and applying MV change logs on query rewrite.

You can even get the up-to-date information when you query
the MV directly. To do so, add the fresh_mv hint:

select /*+ fresh_mv */* from mv;

The really cool part? You can convert your existing MVs to
real time with the following command:

alter materialized view mv
enable on query computation;

This makes MVs much easier to work with, opening up your
querying tuning options.

22
February 2018

Top Feature VII—Approximate Query Enhancements
If you do data analysis, you often need to answer questions

such as:

➤	 How many customers visited our website yesterday?
➤	 How many different products did we sell last month?
➤	 How many unique SQL statements did the database exe-

cute last week?

(OK, maybe that last one is just me.) In any case, often these
questions are simply the starting point for further analysis. You
just want a quick estimate. Answering these questions normally
needs a count distinct along the lines of:

 select count (distinct customer_id)
 from website_hits;

However, these queries can take a long time to run, and wait-
ing for the answer is frustrating. It’s worse if you’re getting the
figures for someone else—like your boss—and the figures are
needed for a meeting that starts in a minute. Especially when
your query takes at least ten minutes. In cases like this you just
need a quick estimate. After all, your boss will round your figure
to one or two significant digits anyway.

In 12.1.0.2 we introduced approx_count_distinct, which re-
turns an estimate of how many different values there are in the
target column. This is typically over 99% accurate and could be
significantly faster than exact results. This is cool, but to take
advantage of it, you need to change your code, which could be a
time-consuming task. This is especially true because most of the
time you’ll want to be able to switch between exact and approxi-
mate results. A simple find+replace is out; instead you’ll have to
pass in a flag to toggle between modes.

If you’re a big user of distinct counts this could be a lot of
work, so in 12.2 we introduced a new parameter: approx_for_
count_distinct. Set this to true as follows:

alter session set approx_for_count_distinct = true;

Oracle then implicitly converts all count distincts to the ap-
proximate version. While playing with this you may notice a
couple of other new parameters:

➤	 approx_for_aggregation
➤	 approx_for_percentile

What are these all about? Well, in 12.2 we’ve created a new
function: approx_percentile. This is the approximate version of
the percentile_disc and percentile_cont functions. It’s the same
concept as approx_count_distinct, just applied to these func-
tions. The syntax for it is

approx_percentile (
 <expression> [deterministic],
 [('ERROR_RATE' | 'CONFIDENCE')]
) within group (order by <expression>)

As you can see, this has a couple of extra clauses over ap-
prox_count_distinct.

Deterministic Results
“Deterministic” defines whether you get the same results each

time you run it on the same data set. “Non-deterministic” is the
default, meaning that you could get different answers each time.
You may be wondering why you would ever want non-determin-
istic results. There are a couple of reasons:

➤	 Non-deterministic results are faster.
➤	 You can only get deterministic results on numeric values.

For instance, if you want the 10th percentile in a range of
dates, you have to go non-deterministic. But is the time saving
for non-deterministic results worth it? To find out, I created a 16
million row table Exadata Express Cloud Service and then com-
pared the run time of the following exact, deterministic, and
non-deterministic percentiles:

select percentile_disc(0.1)
within group (order by y)
from super_massive;

select approx_percentile(0.1 deterministic)
within group (order by y)
from super_massive;

select approx_percentile(0.1)
within group (order by y)
from super_massive;

Averaging the time for three runs of each gave the following
results:

The figure shows the average run time in hundredths of a
second. Non-deterministic results are around 5x faster than de-
terministic and nearly 15x faster than exact results. If an estimate
is all you need, you can save yourself a lot of time using ap-
prox_percentile.

ERROR_RATE and CONFIDENCE
If you’re getting estimated figures, it does raise the question of

just how accurate the results are. If they’re 99.9999% accurate,
that’s almost certainly “good enough.” But what if they’re only
98% accurate? Or 95%? At some point the error is too large for
you to rely on the estimate, and you’ll want to switch back to
exact calculations. But to do this, you need to know what the
error is. To find this, pass ERROR_RATE or CONFIDENCE as
the second parameter. Then you’ll get the accuracy figures in-
stead of the function result. “Confidence” is how certain we are
that the answer is correct. The error rate gives the level of inac-
curacy, which is perfect for finding out how good the approxima-
tion is. And there’s more . . .

The stats geeks among you will know that median is a special
case of percentile, which means that there’s also an approx_me-
dian function available. This works in the same way as approx_
percentile. But how do these functions relate to the parameter
approx_for_percentile? Well, there are two percentile functions

23
The NoCOUG Journal

in Oracle: percentile_disc and percentile_cont. You have the op­
tion to convert either of these or both of them, as well as to do so
in a deterministic manner or not. The values this takes are

➤	 all deterministic
➤	 percentile_disc deterministic
➤	 percentile_cont deterministic
➤	 all
➤	 percentile_disc
➤	 percentile_cont
➤	 none

Top Feature VIII—Verify Data Type Conversions
Validating that a date is indeed a date is one of those all-too-

common problems. A prime cause of this is the terrible practice
of storing dates as strings. One of the biggest issues it is enables
people to store things that clearly aren't dates in “date” columns:

create table dodgy_dates (
 id int,
 is_this_a_date varchar2(20)
);

insert into dodgy_dates
values (1, 'abc');

Along with a whole bunch of values that might be dates:

insert into dodgy_dates
values (2, '20150101');

insert into dodgy_dates
values (3, '01-jan-2016');

insert into dodgy_dates
values (4, '01/01/2016');

Returning only the valid dates is tricky. If you try to convert
everything using to_date(), you'll get exceptions:

select t.*
from dodgy_dates t
where to_date(is_this_a_date) < sysdate;

ORA-01858: a non-numeric character was found where a numeric was expected

Or maybe:

ORA-01861: literal does not match format string

Or:

ORA-01843: not a valid month

You could get around this by writing your own is_date() func­
tion. Or, if you're really brave, use a regular expression. Either
way, it’s a lot of unnecessary work. To make your life easier, we’ve
created a new function: validate_conversion. You pass this a
value and a data type; then Oracle will tell you whether it can do
the conversion. If it can, it returns one. Otherwise you get zero.
To return the rows in the table that can be real dates, place this
in your where clause:

select t.*
from dodgy_dates t
where validate_conversion(is_this_a_date as date) = 1;

ID IS_THIS_A_DATE
---------- --------------------
3 01-jan-2016

There’s no error. But where did rows 2 and 4 go? They’re pos­
sible dates too. Validate_conversion only tests one date format at
a time. By default this is your NLS_date_format. Each client can
set their own format. If you rely on this, you may get unexpected
results. To avoid this, I strongly recommend that you pass the
format as a parameter. For example:

select t.*
from dodgy_dates t
where validate_conversion(is_this_a_date as date, 'yyyymmdd') = 1;

ID IS_THIS_A_DATE
---------- --------------------
2 20150101

In order to return all of the possible dates, you’ll need to call
this multiple times:

select t.*
from dodgy_dates t
where validate_conversion(is_this_a_date as date, 'yyyymmdd') = 1 or
 validate_conversion(is_this_a_date as date, 'dd/mm/yyyy') = 1 or
 validate_conversion(is_this_a_date as date, 'dd-mon-yyyy') = 1;

ID IS_THIS_A_DATE
---------- --------------------
2 20150101
3 01-jan-2016
4 01/01/2016

This isn’t just for dates. You can use validate_conversion with
any of the following data types:

➤	 binary_double
➤	 binary_float
➤	 date
➤	 interval day to second
➤	 interval year to month
➤	 number
➤	 timestamp
➤	 timestamp with time zone
If you want to convert strings to dates, you’ll need similar

logic in the select. This will test the expression against various
format masks. If it matches, call to_date with the relevant mask:

case
 when validate_conversion(is_this_a_date as date, 'yyyymmdd') = 1
 then to_date(is_this_a_date, 'yyyymmdd')
 when validate_conversion(is_this_a_date as date, 'dd/mm/yyyy') = 1
 then to_date(is_this_a_date, 'dd/mm/yyyy')
 when validate_conversion(is_this_a_date as date, 'dd-mon-yyyy') = 1
 then to_date(is_this_a_date, 'dd-mon-yyyy')
end

This is clunky, but fortunately 12.2 has more functionality to
support data type conversions.

Handle Casting Conversion Errors
From time to time you’ll want to cast a value to a different

data type. This can bring problems if your values are incompat­
ible with the desired type. You could overcome this with the
validate_conversion function we discussed above, but there is
another way. Cast now has a “default on conversion error” clause.
This specifies which value Oracle returns if it can’t convert the
expression to the type you wanted. For example, say you’re at­
tempting to cast a varchar2 column to a date, but it happens to
include the value “not a date.” You’d get a nasty error:

select cast ('not a date' as date)
from dual;

ORA-01858: a non-numeric character was found where a numeric was expected

24
February 2018

With the new clause you can tell Oracle to return a “magic
date” instead of throwing an exception. For example:

select cast (
 'not a date' as date
 default date'0001-01-01' on conversion error
) dt
from dual;

DT

01-JAN-0001 00:00:00

You can then add checks to your code for this magic value.
Note that the default value has to match the data type you’re
converting to. If you’re casting to a date, you can’t return a string:

select cast (
 '01012010' as date
 default 'not a date' on conversion error
) dt
from dual;

ORA-01858: a non-numeric character was found where a numeric was expected

And, as with validate_conversion, cast uses your NLS settings
for the default format. If you want to override these, pass the
format as a parameter:

select cast (
 '01012010' as date
 default '01010001' on conversion error,
 'ddmmyyyy'
) dt
from dual;

DT

01-JAN-2010 00:00:00

This is neat, but at first glance it seems, well, limited. After all,
how often do you use cast? If you’re like me, the answer is “rare­
ly.” But there’s more to it than that: the conversion error clause
also applies to other casting functions, such as:

➤	 to_date()
➤	 to_number()
➤	 to_yminterval()

That’s really useful. These are functions you use all the time.
Now you can write data type conversions like this:

select to_date(
 'not a date' default '01010001' on conversion error,
 'ddmmyyyy'
) dt
from dual;

DT

01-JAN-0001 00:00:00

Combining this with validate_conversion makes changing
expressions to a new data type much easier.

Top Feature IX—Single Statement Table Partitioning
Here’s a question that frequently comes up on Ask Tom: How

do I convert a non-partitioned table to a partitioned one? Before
12.2 this was a convoluted process. You had to create a parti­
tioned copy of the table and transfer the data over. You could use
DBMS_redefinition to do this online, but it was a headache and
easy to get wrong. In Oracle Database 12c Release 2 it’s easy. All
you need is a single alter table command:

create table t (x int, y int, z int);

alter table t modify
partition by range (x) interval (100) (
 partition p1 values less than (100)
) online;

And you’re done! “But what about all the indexes?” I hear you
cry. Well, you can convert them too! Just add an update indexes
clause and state whether you want them to be local or global after
the conversion:

create index iy on t (y);
create index iz on t (z);

alter table t modify
partition by range (x) interval (100) (
 partition p1 values less than (100)
) update indexes (
 iy local,
 iz global
);

If you really want to, you can give your global indexes differ­
ent partitioning schemes. While you can change from a non-
partitioned table to partitioned, you can’t go back again. You also
can’t change the partitioning scheme—e.g., go from list to range.
Try to do so and you’ll get:

ORA-14427: table does not support modification to a partitioned state DDL

But if you want to get really fancy, you can go directly from a
normal table to one with subpartitions.

alter table t modify
partition by range (x) interval (100)
 subpartition by hash (y) subpartitions 4 (
 partition p1 values less than (100)
) online;

And there are even more improvements to partitioning, as
we’ll see.

Top Feature X—Automatic List Partitioning
List partitions are great when you have a column with a spe­

cific set of values that you want to carve into separate partitions.
Values like states, countries, and currencies are all good exam­
ples. Reference data like these rarely change, but they do change.
For example, South Sudan came into being in 2011.

If you list partitioned your data by country, you need to keep
your partitions up to date—particularly if you let customers pro­
vide their own values—or you could end up with embarrassing
errors such as:

SQL Error: ORA-14400: inserted partition key does not map to any partition

This, of course, will happen at 2 a.m.—and it’s a great way to
incur the wrath of the on-call DBA. To avoid this you could cre­
ate a default partition, and any new values would then go into it.
This will prevent inserts from throwing exceptions, but all new
values go into the default partition. Over time this partition
would fill up with all the new values.

You need a regular maintenance task to split values out as
needed. 12.2 resolves this problem with Automatic List Par­
titioning. Every time you insert new values, Oracle will create
the new partition on the fly. To use it, simply place the auto­
matic keyword after the partition column:

25
The NoCOUG Journal

create table orders (
 customer_id integer not null,
 order_datetime date not null,
 country_iso_code varchar2(2) not null
) partition by list (country_iso_code) automatic (
 partition pUS values ('US'),
 partition pGB values ('GB'),
 partition pDE values ('DE'),
 partition pFR values ('FR'),
 partition pIT values ('IT')
);

insert into orders values (1, sysdate, 'ZA');

select partition_name
from user_tab_partitions
where table_name = 'ORDERS';

PARTITION_NAME

PDE
PFR
PGB
PIT
PUS
SYS_P1386

Each new partition will have a system-generated name, but
you may want to change them to meaningful names. You can do
this with:

alter table orders rename partition SYS_P1386 to pZA;

Be aware, however, that the default partition and automatic
list partitioning are mutually exclusive options:

create table orders (
 customer_id integer not null,
 order_datetime date not null,
 country_iso_code varchar2(2) not null
) partition by list (country_iso_code) automatic (
 partition pUS values ('US'),
 partition pGB values ('GB'),
 partition pDE values ('DE'),
 partition pFR values ('FR'),
 partition pIT values ('IT'),
 partition pDEF values (default)
);

SQL Error: ORA-14851: DEFAULT [sub]partition cannot be specified for AUTOLIST [sub]
partitioned objects.

This makes sense when you think about it, but if you want to
migrate list partitions with a default to automatic, you’ll need to
go through a process. First split everything out of the default
partition, and then drop it:

create table orders (
 customer_id integer not null,
 order_datetime date not null,
 country_iso_code varchar2(2) not null
) partition by list (country_iso_code) (
 partition pUS values ('US'),
 partition pGB values ('GB'),
 partition pDE values ('DE'),
 partition pFR values ('FR'),
 partition pIT values ('IT'),
 partition pDEF values (default)
);

insert into orders values (1, sysdate, 'ZA');
insert into orders values (2, sysdate, 'JP');

alter table orders split partition pDEF into (
 partition pZA values ('ZA'),
 partition pJP values ('JP'),
 partition pDEF
);

alter table orders drop partition pDEF;

alter table orders set partitioning automatic;

Note that this leaves a brief time when there’s no default parti­
tion, and automatic partitioning isn’t ready. You may want to take
a short outage to do this.

Top Feature XI—Mark Old Code as “Not For Use”
Times change. New code quickly becomes legacy code, and

legacy code is often superseded by better, faster code. So, you
deprecate the old code, but this creates a problem: How do you
stop people from using the legacy modules?

People tend to stick with what they know. Even after you’ve
repeatedly told everyone to move to the new module, there’s al­
ways (at least) one developer who insists on using the deprecated
procedure instead of the newer, shinier option—and in complex
applications it’s tough to keep track of what’s obsolete.

This problem is tough to solve. In order to help you with the
deprecation process, we’ve introduced a new pragma for this. To
use it, place

pragma deprecate (deprecated_thing, 'Message to other developers');

below the retired section. Great—but how does it help? We've
added a bunch of new PL/SQL warnings: PLW-6019 to PLW-
6022. Enable these and Oracle will tell you if you’re using depre­
cated code:

alter session set plsql_warnings = 'enable:(6019,6020,6021,6022)';
create or replace procedure your_old_code is
 pragma deprecate (
 your_old_code, 'This is deprecated. Use new_code instead!'
);
begin
 null;
end your_old_code;
/
show err

Warning(2,3): PLW-06019: entity YOUR_OLD_CODE is deprecated

This is great, but we’ve all been ignoring the “AUTHID
DEFINER” warning forever. If code is truly obsolete, it would be
good if you could keep people from using it altogether. Fortun­
ately, you can. Here’s the great thing about warnings: you can
upgrade them to be errors. PLW-6020 is thrown when you write
code calling a deprecated item. Set this to error and the offending
code won’t compile:

alter session set plsql_warnings = 'error:6020';
create or replace procedure calling_old_code is
begin
 your_old_code();
end calling_old_code;
/
sho err

3/3 PLS-06020: reference to a deprecated entity: This is deprecated. Use new_code
instead!

Of course, if you turn PLW-6020 into an error systemwide, a
lot of stuff might break. Luckily, you can selectively upgrade it on
given objects:

alter procedure calling_old_code compile plsql_warnings = 'error:6020' reuse settings;

Now you have the power to force others to stop using prehis­
toric code.

Top Feature XII—PL/SQL Code Coverage
We’ve covered a lot of new functionality. Some of it you’ll use

straight away; other bits will wait a while. In any case, when you
upgrade to 12.2, you’ll want to test all your code to ensure that it

26
February 2018

works as expected, which raises the question, “How much of my
code did the tests actually run?”

Coverage metrics will help immensely with this. Simple line-
level analysis of the tests isn’t good enough. To see why, consider
the code below. We have a basic function that returns its argu­
ment and calls dbms_output. The procedure calls the function
twice in a single if statement:

create or replace function f (p int)
 return int as
begin
 dbms_output.put_line('Executed: ' || p);
 return p;
end;
/

create or replace procedure p is
begin
 if f(1) = 1 or f(2) = 2 then
 dbms_output.put_line('this');
 else
 dbms_output.put_line('that');
 end if;
end p;
/

Due to short-circuit evaluation, f(2) is never executed. You
can see this from the output:

SQL> exec p;

Executed: 1

this

Anything working at the line level will incorrectly report this
as fully covered. To overcome this, you need details of basic
block executions. A “basic block” is a piece of code that either
runs completely or not at all. Code always belongs to exactly one
basic block. The following example has four basic blocks, one for
each call to f and two for the calls to dbms_output.put_line:

 if f(1) = 1 or f(2) = 2 then
 dbms_output.put_line('this');
 else
 dbms_output.put_line('that');
 end if;

The new code coverage functionality measures and reports on
these basic blocks. Using it is easy. First you need to create cover­
age tables to store the metrics:

exec dbms_plsql_code_coverage.create_coverage_tables;

Then call start_coverage before your test and stop_coverage
after:

declare
 run_id pls_integer;
begin
 run_id := dbms_plsql_code_coverage.start_coverage('TEST');
 p;
 dbms_plsql_code_coverage.stop_coverage;
end;
/

You can then get metrics by querying the dbmspcc* tables
that hold these details:

select owner, name, type,
 round((sum(covered)/count(*) * 100), 2) pct_covered
from dbmspcc_runs r
join dbmspcc_units u
on r.run_id = u.run_id
join dbmspcc_blocks b

on r.run_id = b.run_id
and u.object_id = b.object_id
where r.run_comment = 'TEST'
group by owner, name, type;

OWNER NAME TYPE PCT_COVERED
----- ----- ---------- -----------
CHRIS P PROCEDURE 50
CHRIS F FUNCTION 100

This is all well and good, but there’s always some code that
your tests don’t cover. Maybe it’s deprecated, so you don’t need
test it, or it’s just-in-case code to cover theoretically possible but
practically impossible cases— such as the infamous “when oth­
ers” exception handler. These sections should be excluded from
your reports. Fortunately you can do this with the coverage
pragma. By marking lines as NOT_FEASIBLE, you can filter
them out of your reports:

create or replace procedure p is
begin
 if f(1) = 1 or f(2) = 2 then
 dbms_output.put_line('this');
 else
 pragma coverage ('NOT_FEASIBLE');
 dbms_output.put_line('that');
 end if;
end p;
/

Rerun the tests and you can hide the untestable parts in your
report.

select owner, name, type,
 round((sum(covered)/count(*) * 100), 2) pct_covered
from dbmspcc_runs r
join dbmspcc_units u
on r.run_id = u.run_id
join dbmspcc_blocks b
on r.run_id = b.run_id
and u.object_id = b.object_id
where r.run_comment = 'TEST'
and b.not_feasible = 0
group by owner, name, type;

OWNER NAME TYPE PCT_COVERAGE
----- ---- --------- ------------
CHRIS P PROCEDURE 66.67
CHRIS F FUNCTION 100
If you really want to, you can exclude whole sections of code by wrapping it in two
coverage pragmas: NOT_FEASIBLE_START and NOT_FEASIBLE_END:
begin
 pragma coverage ('NOT_FEASIBLE_START');
 a_section();
 of_untestable_code();
 pragma coverage ('NOT_FEASIBLE_END');
end;
/

Wrap Up
Do you want to get your hands on Oracle Database 12c

Release 2? Head over to the database options on Oracle Cloud.
There you can get access with Oracle Database Cloud Service or
Exadata Cloud Service, or you can let us look after your database
with the Exadata Express Cloud Service. Alternatively you
can download it from OTN.

Chris Saxon is an Oracle Developer Advocate for SQL. He blogs at All
Things SQL and creates YouTube videos combining SQL and magic
at The Magic of SQL. Reach out to Chris via Twitter or on Ask Tom.

© 2018 Chris Saxon

27
The NoCOUG Journal

Where in the World is Kerry
Osborne? Season 31 Episode 4

Kerry Osborne fans were delighted when Kerry Osborne suddenly showed up to
attend Tanel Põder’s workshop at the fall conference in downtown Oakland.

Thanks to Axxana for hosting the post-conference happy hour at The Trappist. Can you spot Kerry in his trademark baseball cap?

P I C T U R E
D I A R Y

NoCOUG
P.O. Box 3282
Danville, CA 94526

RETURN SERVICE REQUESTED

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

!"#$%#"&'()!!
*!)++$+

!"#$%&'()*+*,'-#./0#/1 ()*+*,'!"#$%&'2.+*,'
3*'345'5&06"/

()*+*,'!"#$%&'2.+*,'
378#*$&7'39:'9/"#/&,+&.

;&"<6"=#*$&'3*#%>.+.'
3*7'()*+*,

(32?:('@A'

!"#$%&"!'&()*+

http://orapub.com
mailto:support%40orpub.com?subject=

	_GoBack
	json
	json-sql
	json-plsql
	long-names
	expressions
	listagg
	real-time-mv
	approx-queries
	validate-conversion
	_GoBack
	cast-default
	partition-online
	auto-list-partition
	deprecate
	code-coverage
	_GoBack

